On <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1594" altimg="si2.svg"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> cubic quasi-interpolating splines and their computation by subdivision via blossoming

نویسندگان

چکیده

We discuss the construction of C 2 cubic spline quasi-interpolation schemes defined on a refined partition. These are reduced in terms degrees freedom compared to those existing literature. Namely, we provide rule for reducing them by imposing super-smoothing conditions while preserving full smoothness and precision. In addition, subdivision rules means blossoming. The derived designed express B-spline coefficients associated with finer partition from former one.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Computation by Subdivision of Multidimensional Splines and Their Applications

We present theory and algorithms for fast explicit computations of uniand multi-dimensional periodic splines of arbitrary order at triadic rational points and of splines of even order at diadic rational points. The algorithms use the forward and the inverse Fast Fourier transform (FFT). The implementation is as fast as FFT computation. The algorithms are based on binary and ternary subdivision ...

متن کامل

Computation of interpolatory splines via triadic subdivision

We present an algorithm for computation of interpolatory splines of arbitrary order at triadic rational points. The algorithm is based on triadic subdivision of splines. Explicit expressions for the subdivision symbols are established. These are rational functions. The computations are implemented by recursive filtering.

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Variational Subdivision for Natural Cubic Splines

This paper explores the intrinsic link between natural cubic splines and subdivision. Natural cubic splines are deened via the varia-tional problem of minimizing a simple approximation of bending energy. A subdivision scheme is derived which converges to the minimizer of this particular variational problem. x1. Introduction Geometric design is the study of the representation of shapes with math...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2023

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2022.114834